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Summary 

 
A practical implementation has been made of the probabilistic approach to dietary 
acute risk assessment. Full electronic databases with food consumption data and 
residue concentration data were available from the Food Consumption Survey (VCP) 
and the Quality Program for Agricultural Products (KAP), respectively. A non-
parametric Monte Carlo approach, using food consumption and residue data from the 
databases directly, was chosen as a basic method. The implementation in a general-
purpose statistical language (Genstat) gave similar results as an implementation 
using the decision tool @Risk, but performed much faster.  
Even with the large amount of data available in the Netherlands, it often occurs that 
data for a specific combination of residue and food commodity are scarce, or absent. 
These problems will certainly multiply if applications in other countries having less 
measurement data available would be considered. For data-scarce situations a 
parametric approach to the modelling of residue concentration distributions has been 
explored. First results indicate a good performance of a binomial-lognormal model, 
but further research is needed. 
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1 Introduction 
Residues of pesticides or animal drugs and environmental contaminants present a 
health hazard due to their possible presence in human food. Reliable and accurate 
quantitative methods are required to assess the dietary exposure to residues and 
contaminants. Basically, all methods follow the equation 
 

weightbody
ionconcentratnconsumptio

Exposure ∑ ×
=  

 
where the summation is over food commodities in the diet which may contain the 
residue of interest. Consumption is expressed per day, and standardization on body 
weight then gives the amount of residue per kg body weight per day, which can be 
easily compared with health norms such as ADI (acceptable daily intake) or ARfD 
(acute reference dose). 
An important distinction is made between chronic and acute exposure. In the first 
case variability of consumption and residue levels is less important because of 
averaging over the long term. In this report we will be concerned with models for 
acute risk assessment. 
In acute risk assessment models the variability in consumption and residue levels 
cannot be ignored. Therefore a probabilistic approach is needed which incorporates 
the stochastic nature of food consumption and residue concentrations. In this 
approach, a distribution of food consumption data as well as a distribution of residue 
data are used.  
For both components of the model (consumption data and residue data) a choice can 
be made between a parametric or a non-parametric approach. In a parametric 
approach the data are modelled with an appropriate distributional form (e.g. 
lognormal). For modelling the food consumption a multivariate specification is 
required, due to correlations between consumption of specific products. On the other 
hand residue concentrations in the various food commodities may be assumed to be 
independent and therefore can be modelled by univariate distributions. In a non-
parametric approach the empirical distribution is used to sample from directly. 
Obviously, the latter approach requires more data to obtain a satisfying 
representation of the full distribution. Therefore, parametric modelling becomes 
important in data-scarce situations.  
With random sampling from both the consumption and the residue distribution an 
exposure value can be calculated. The sampling is repeated many times to generate 
an exposure distribution. The new distribution is analysed to determine statistics for 
the population, most notably the percentiles in the upper tail.  
In this study the probabilistic approach to estimate the dietary intake of residues and 
contaminants in food is implemented and illustrated using residue data from the 
KAP database and consumption data from a national survey on food consumption. In 
chapter 3 a non-parametric approach is used: consumption patterns (with the 
associated body weight of the sampled individual) and residue values are sampled at 
random from the available data and merged together to generate a new distribution 
of exposure values. To assess the risk-exposure, percentiles of the exposure 
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distribution are estimated. This approach is implemented both in a general-purpose 
statistical programming language, Genstat, and in the currently popular management 
decision tool @Risk, which is an add-in module in Excel. A comparison is made 
between these two implementations. 
In chapter 4 a parametric method is described. Consumption patterns are still 
sampled from the empirical distribution, but residue concentrations per food 
commodity are sampled from parametric distributions. A special feature of residue 
data is that the large majority of measured concentrations (often more than 80 %) is 
recorded as zero. These values may correspond to true zero concentrations (for 
example because the substance is never used in the specific product), or they may 
correspond to low concentrations which are below a pre-established reporting limit. 
In any case, the residue concentration distribution is very skew, with a large spike at 
zero and an extended tail to higher values. For statistical modelling a two-step 
procedure was chosen. First, the presence of a non-zero exposure on food products is 
modelled with a binomial distribution with a parameter p representing the 
probability of a non-zero residue level. p depends on the product and is estimated as 
the fraction of detects. Secondly, the non-zero residues are modelled with a 
parametric distribution. After consideration of several possibilities using the program 
BestFit, the lognormal distribution was selected as being both theoretically sensible 
and practically useful. In the simplest implementation of this parametric approach 
residues in each food are modelled separately. However, frequently, data on residues 
in specific food commodities are sparse or even missing. In those cases, data on 
similar products may provide the necessary information to base the parameter 
estimates upon. Pooling of products in product groups to allow joint estimates of 
parameters is considered in paragraph 4.2. Both versions of the parametric approach 
have been implemented in Genstat. A comparison is made with the non-parametric 
approach. 
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2 Available datasets 

2.1 Consumption data 
In 1992, the second Voedselconsumptiepeiling was carried out among a large 
number of representative households. On 2 successive days 6218 survey respondents 
reported their daily consumption of food commodities. These figures were 
transformed into amounts of raw agricultural products. Respondents were 
categorized by age and sex among  several other characteristics. 
 

2.2 Residue data 
The residue data are available from the KAP-database (Oracle), which stores 
annually more than 200000 records of measurements originating from food 
monitoring programs for meat, fish, dairy products, vegetables and fruit. In this 
study attention is restricted to five pesticides which may enter the food chain through 
vegetables and fruit. Available are data on many products (see Table 1). Missing 
values in Table 1 may indicate the absence of measurements > 0 or the absence of 
measurements altogether. In any case, the majority of the results are reported as non-
detects (“zeroes”) in all cases.  
Table 2 gives the summary statistics for Iprodione, Parathion, Chlorothalonil, 
Pirimicarb and Tolclofos-methyl. For each product the number of non-detects, the 
number of positive values, the number of products and the average residue 
concentration of detects and non-detects of  all products are reported. The majority 
of the data is reported as zero. These zeros should be interpreted as non-detectable 
concentrations. Iprodione is detected the most, the average concentration of all 
values on 55 products was 0.13 mg/kg 
Figure 1 shows the average concentration of all values per product for Iprodione. 
OAKLEAF LETTUCE (16), LAMB’S LETTUCE (17), TURNIP TOPS/GREENS 
(18) and OTHER AGRICULTURAL/HORTICULTURAL PRODUCTS (40) have 
high residue values. Most averages are considerably lower. 
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Table 1. Total number of measurements per food commodity 
   residue    chlr    ipro    para    piri    tolc 
                       product 
    “KOUSEBAND” BLACK-EYED PEA       *       7       *       7       * 
             “RADICCHIO ROSSO”       *      13       *       *       * 
                     “ROODLOF”       *       9       *       *       * 
                 “SPERZIEBOON”       *     101       *       *     102 
                         APPLE     400     400       *     398       * 
                       APRICOT       *      19       *       *       * 
           AUBERGINE/EGG PLANT      67       *       *      68       * 
     BEAN (BROWN/YELLOW/WHITE)       *       *       *       8       * 
 BEAN, (SCARLET/STRING/FRENCH)       *     161       *     161       * 
                  BLACK RADISH       *       *      29       *      29 
                    BLACKBERRY       *      58       *      55       * 
                 BLEACH-CELERY      66      66      66      66      66 
                    BLUE BERRY       *      18       *      15       * 
                    BROAD BEAN       8       *       *       8       * 
                      BROCCOLI       *       *       *      62       * 
              BRUSSELS SPROUTS       *      41       *       *       * 
  CABBAGE LETTUCE, COS LETTUCE     670     670     668     668     668 
                   CANTHARELLE       *       *       *       1       * 
                        CARROT       *     125       *     124     124 
                   CAULIFLOWER       *     126       *     127       * 
                      CELERIAC      39      39      39       *       * 
                        CELERY     120     120     121     121     121 
                       CHERVIL       *       8       *       *       * 
                       CHICORY       *     105       *     103       * 
               CHINESE CABBAGE     112     112     116     116     116 
                      CUCUMBER     245     245       *     249       * 
                 CURLY LETTUCE       *      16       *      16      16 
   CURRANT (RED, WHITE, BLACK)       *     142     126     126       * 
                        ENDIVE     367     367     366     366     366 
                FENNEL (FRESH)       *      50      49       *      49 
                GHERKIN/PICKLE       *      10       *       *       * 
                         GRAPE     198     198     196       *       * 
             GREEN PEA (FRESH)      22       *       *       *       * 
               ICEBERG LETTUCE     176     176     178     178     178 
                    KIWI FRUIT       *      61       *       *       * 
                LAMB’S LETTUCE       *      53      53       *      53 
                  LEAF LETTUCE       *       2       *       2       2 
                          LEEK      68       *     102       *     102 
                        LEGUME      33       *       *      33       * 
                   LOLLO ROSSA      89      89      89      89      89 
         MANDARIJN, CLEMENTINE       *       *     112       *       * 
                         MELON      95       *       *       *       * 
              MIXED VEGETABLES      38      38       *      43      43 
                      MUSHROOM      98       *       *       *       * 
                     NECTARINE       *      65       *       *       * 
               OAKLEAF LETTUCE       *      53      53      53      53 
                 ONION (SMALL)      24      24       *       *       * 
                        ORANGE       *       *     335     335       * 
OTHER AGR./HORTICULT. PRODUCTS       *      54       *      54       * 
             OTHER FRUIT, NUTS       *      18       *       *       * 
       OXHEART/CONICAL CABBAGE       *      53       *      53       * 
                      PAC-CHOY       *      40       *      41      41 
       PARSLEY, ROOTED PARSLEY      84       *      85      85      85 
                 PASSION FRUIT      17       *       *       *       * 
                         PEACH       *      39       *       *       * 
                          PEAR       *      90       *      92       * 
                        PEPPER     117     117     119       *       * 
        PLUM, INCLUDING DAMSON       *      81       *      85       * 
                      POTATOES       *     149       *       *       * 
            PUMPKIN, COURGETTE      82      82       *      88       * 
                      PURSLANE       *      30       *      30      30 
                        RADISH       *     167     167       *     167 
                     RASPBERRY      86      86      68      68      68 
                       SPINACH     172     172     170     170     170 
                    STRAWBERRY     978     978     779     779     779 
                  SWEET CHERRY       *      44       *       *       * 
                  SWEET PEPPER     488     488       *     489       * 
                        TOMATO     372     372       *     377     377 
            TURNIP TOPS/GREENS       *      28       *       *      28 
                 WINTER CARROT       *      40       *       *       * 
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Table 2. Summary statistics: number of observations, number of products, 
average residue concentration of all products, percentage of detects (non-zero’s) 
and the average residue concentration of the non-zero’s 

residue number of 
observations 

number of 
products 

average 
concentration 

(mg/kg) 

percentage of 
detects 

 (%) 

average concentration 
in detects only 

 (mg/kg) 
Iprodione 
Parathion 
Chlorothalonil 
Pirimicarb 
Tolclofos 

6915 
4086 
5307 
5831 
3922 

55 
23 
29 
41 
26 

0.13 
0.01 
0.05 
0.02 
0.02 

14 
2 
2 
6 

12 

0.83 
0.27 
0.55 
0.24 
0.13 
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Figure 1. Average concentration (mg/kg) of detects and non-detects of 
Iprodione for all products 
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3 Non-parametric approach 
Use is made of Oracle databases containing the food consumption and residue 
concentration data. For each residue under investigation (e.g. Iprodione in the 
example below), selections are made from these databases to provide six ASCII 
files: 

Table 3. Files and records 

Personen.lis Individual number, age (years), weight (kg) (of respondents in Food Consumption 
Survey, this file is the same for all residues) 

Ipro_con.lis Individual number, day (1 or 2), product number, amount consumed (g) (this file 
may exclude products that never contain the residue) 

Ipro_geh.lis Product number, measured concentration (mg/kg) 
(File has a line for each non-zero measurement) 

Ipro_nge.lis Product number, total number of measurements per product (including zeroes) 

Ipro_prd.lis Product number, product name 

Ipro_sto.lis Residue number, residue name (this file contains only one line) 

 
Product and residue number have a hierarchical structure, allowing to consider 
product groups or residue groups by ignoring some of the digits. See Appendix for 
more information. 
The ASCII files are used in both the Genstat and @Risk implementations described 
below in detail. In both cases individual daily consumption patterns are randomly 
selected from the con file, and residue concentrations are sampled from the geh and 
nge files. The non-parametric exposure distribution is obtained by repeatedly 
multiplying the sampled values together, summing over the food products, and 
dividing by body weight which is retrieved from the personen file. Product and 
residue names are retrieved from the prd and sto files to obtain a more readable 
output. 

3.1 Genstat implementation 
The Genstat program is fast, because sampling is done in parallel data structures. Let 
n be the chosen number of simulations, and k the number of food products. Then the 
program selects a simple random sample of n individual numbers and a simple 
random sample of n day numbers (1 or 2). The selection of individuals may be 
restricted to a specified range of ages (for example, only children from 0 to 4 years). 
A typical value of n may be 100,000. Note that each of the 6218 individuals is likely 
to occur many times in the sample. For each iuxtaposed combination of sampled 
individual and sampled day the consumption data are retrieved from the con file, and 
stored in an n × k matrix.  
Another n × k matrix  is constructed to contain simulated concentration data. For all 
k products the total number of measurements (t) and the number of non-zero 
measurements (w) is determined from the nge and geh files. Then random index 
numbers (i) between 1 and t are sampled for each cell of the matrix. If i≤w, then the 
ith value for this product is selected from the geh file. If i>w, then a value 0 is 
inserted in the concentration matrix. 
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Both n × k matrices are now multiplied elementwise, and all values are divided by 
1000, because consumption is in g, but exposure in mg. Summing over the k 
products and dividing by the n body weights corresponding with the n selected 
individuals then gives the simulated exposure distribution as a vector of n values. 
Relevant percentiles can be obtained from this vector. 

3.2 @Risk implementation 
@Risk is a simulation add-in for Excel and adds Monte Carlo simulations to 
spreadsheets. Uncertain values in the spreadsheet are replaced by @Risk or user-
defined probability distribution functions. Spreadsheets are recalculated sequentially 
10.000 – 50.000 of times, each time sampling random values from the @Risk 
functions. The sequential nature of the spreadsheet recalculations makes the @Risk 
implementation much slower than the Genstat program (hours instead of minutes), 
thereby limiting the practical number of simulations.  
The result is a distribution of possible outcomes, which again can be investigated for 
the relevant percentiles. The Monte Carlo simulation in @Risk can carried out either 
by simple random sampling or by Latin Hypercube sampling. The latter method is in 
theory more efficient, and was therefore used in this study. 
The practical implementation of risk analysis in Excel and @Risk is an Excel 
worksheet risico. This worksheet contains references to 6 worksheets in the same 
Excel workbook, which contain copies of the 6 above-mentioned ASCII files. The 
worksheet risico makes use calculations involving the @Risk functions 
RiskDuniform and RiskDiscrete, which are recognized by @Risk during the 
simulation, and used for sampling the data in the other sheets. At any time the 
worksheet risico shows the results of one simulation (see Table 4). 



 11

 

Table 4. Example of @Risk worksheet risico (part) showing one simulation for 
Iprodione. A slight exposure of a 20-year old individual is in this case mainly 
due to consumption of CARROT (WORTEL) (and in a lesser extent 
CURRANT (AALBES)). This person is lucky not to eat highly contaminated 
BLACKBERRY (BRAAM), but instead lots of clean APPLE (APPEL) and 
GRAPE (DRUIF). 

 

RISICOANALYSE IPRODION (=GLYCOFEEN)
Dag Persoon Leeftijd Gewicht BELASTING

1 358954 20 84 Totaal: 0.013486
jaar kg microg/kg

CONSUMPTIE (g) GEHALTE (mg/kg) BELASTING (microg/kg)
BOON, (PRONK/SLA/SNIJBOON) 0 0 0
SPERZIEBOON 0 0 0
WITLOF 0 0 0
ROODLOF 0 0 0
ANDIJVIE 0 0 0
IJSBERGSLA 0 0 0
KROPSLA, BINDSLA 0 0 0
KRULSLA 0 0 0
LOLLO ROSSA 0 0 0
PLUKSLA 0 0.21 0
SELDERIJ 0.19 0 0
SPINAZIE 0 0 0
KERVEL 0 0 0
POSTELEIN 0 0 0
RADICCHIO ROSSO 0 0 0
EIKEBLADSLA 0 0 0
VELDSLA 0 0 0
RAAPSTELEN, RUCOLA 0 0 0
BLEEKSELDERIJ 0 0 0
BLOEMKOOL 10.097 0 0
SPRUITKOOL 0 0 0
CHINESE KOOL 0 0 0
SPITSKOOL 0 0 0
BOSUI 0 0 0
VENKEL (VERS) 0 0 0
AARDAPPELEN 13.856 0 0
WINTERWORTEL 0 0 0
WORTEL 11.48 0.09 0.0123
RADIJS 0 0 0
KNOLSELDERIJ 0 0 0
KOMKOMMER 0 0 0
TOMAAT 13.802 0 0
PAPRIKA 0.96 0 0
POMPOEN, COURGETTE 0 0 0
PEPERS 0 0 0
AUGURK 0 0 0
KOUSEBAND 0 0 0
PAKSOI 0 0 0
GEMENGDE GROENTEN 0 0 0
OV. LAND- EN TUINBOUWPRODUKTEN 0 0 0
KIWI 0 0 0
APPEL 270.48 0 0
PEER 1.664 0 0
ABRIKOOS 1.636 0 0
NECTARINE 0 0 0
PERZIK 1.64 0 0
PRUIM, INCL KWETS 0 0.02 0
KERS 1.648 0 0
DRUIF 252.35 0 0
AARDBEI 1.652 0 0
FRAMBOOS 1.66 0 0
BRAAM 0 1.9 0
BLAUWE BES 0 0 0
AALBES (ROOD, WIT, ZWART) 1.66 0.06 0.001186
OV. FRUIT, NOTEN 0 0 0
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3.3 Results 
We first give some detailed results for Iprodione, and then a summary of the 
calculated exposure percentiles for all 5 residues. 
Table 5 summarizes the simulation results relating to Iprodione using Genstat and 
@Risk. The main results are the percentiles of the intake distribution. For example, a 
99 % percentile of 4 μg/kg/day means that an intake of at least this level is expected 
for 1 out of every 100 intakes, or 10 out of every 1000 intakes, or 100 out of every 
10000 intakes , etc.  
Iprodione is measured on 55 products. Only 937 residues were positive (14%), the 
number of non-detects was 5978 (86%). In total 6218 persons were surveyed on 2 
successive days, giving an incidence matrix with 87117 values. The number of 
iterations was 50.000. A simulation run with @Risk took 2h.9’, Genstat completed 
the task within a 2 minutes. Between Genstat and @Risk only minor differences 
occur, no more than between repeated simulations with any one of the programs. 
Results are relatively stable for the estimates of the 95th , 98th, 99th percentile of 
exposure to Iprodione. Discrepancies occur at the higher percentiles, e.g. estimates 
of the 99.99th percentile range from 44 to 74 μg/kg/day.  
 

Table 5. Estimates of percentiles of exposure to Iprodione (μg/kg/day) for 
simulations with Genstat and @Risk using non-parametric approach (50000 
iterations) 

Iprodione Percentile 
 

95 
% 

98 
% 

99 
% 

99.5 
% 

99.9 
% 

99.99 
% 

Genstat  0.66 
0.62 
0.64 

2.1 
2.2 
2.0 

4.3 
4.5 
4.0 

7.0 
8.4 
6.6 

18 
22 
16 

64 
74 
44 

@Risk   0.64 2.1 4.2 7.0 17 47 

 
 
Figure 2 shows the empirical frequency distribution for exposure to Iprodione 
(50000 iterations). Table 6 shows the products which are responsible for the 10 
highest simulated intakes, with ENDIVE as a main source of very high intakes.  
Table 7 shows estimated percentiles for all 5 example substances. 
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Figure 2. Upper tail of the empirical frequency distribution for 50000 Iprodione 
exposure simulations. The first three bars (cut off at 250) represent zero 
exposures (25541 values) and positive values ≤ 2 μg/kg/day (23469 values) and 
values >2 and ≤ 4 μg/kg/day (494 values). 
 

Table 6. Non-parametric approach. Top 10 (0.02 %) of 50000 simulated total 
Iprodione intakes (μg/kg/day), traced to responsible products (excluding 
contributions < 0.5 μg/kg/day). 
Total intake 100 66 61 46 45 44 42 41 41 40 
ENDIVE 100  61 46 45 44     
CABBAGE LETTUCE  66       1  
SPINACH       42    
LAMB’S LETTUCE        41 40 40 

 

Table 7. Percentiles of exposure distributions for five residues in μg/kg/day. 
Non-parametric approach, Genstat implementation, 50000 iterations. 

 
 
Residue 

Percentile 
     
 

95 
% 

98 
% 

99 
% 

99.5 
% 

99.9 
% 

99.99 
% 

Chlorothalonil  0.02 0.10 0.20 0.39 1.6 7.5 
Iprodione  0.64 2.0 4.0 6.6 16 44 
Parathion  0.001 0.02 0.07 0.18 1.9 26 
Pirimicarb  0.03 0.14 0.41 0.88 3.1 9.4 
Tolclofos-methyl  0 0.008 0.08 0.24 1.1 4.2 
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4 Parametric approach 
The residue data on commodities contain many non-detects, which appear as zeros in 
the database. Therefore, it was decided to proceed the parametric approach in two 
steps: a binomial distribution was fitted to the zero and non-zero data, giving 
probability p, while a lognormal model was used to generate the residue distribution 
of the non-zero data. Parameter p of the binomial was estimated as the fraction of 
detects, the parameters, μ and  of the lognormal were based on the logtransformed 
non-zero residues.  
 

4.1 Comparing distributions 
BestFit is a decision tool, which can be linked to Excel to fit data to more than 30 
distribution types. It performs statistical tests to compare quality of fit and ranks 
distributions by three goodness-of-fit statistics. In this study we used the Anderson-
Darling test which is similar to the Kolmogorov-Smirnov test, but places more 
emphasis on the tail values. All tests are very sensitive to the number of values. 
Graphs are used to assess visually how well distributions agree with the input data. 
Both test statistics as graphs should be used in interpreting the results.  
BestFit was used to explore the non-zero residue values to find which of the 
distribution types fits best. Products with at least 30 positive measurement values 
were taken to explore which distributional type was suitable. Table 8 summarizes 
accepted test-results according to the Anderson-Darling goodness-of-fit statistic. 
Distributions that are not in the table are rejected by all goodness-of-fit statistics. 
The lognormal and the Pearson VI turned out to have an adequate fit for Iprodione 
content in all five products. 
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Table 8. Test results for fitting distributions to positive Iprodione contents in 
ENDIVE, CABBAGE LETTUCE, CURRANT, CARROT and STRAW-
BERRY. n = sample size, acc = acceptable distribution according to Anderson-
Darling test (95 % significance test). In parentheses are the ranks of the best 
fitting distributions. Calculations with BestFit. 

 ENDIVE  CABBAGE 
LETTUCE  

CURRANT  CARROT  STRAWBERRY  

distributions n=92 n=286 n=30 n=36 n=169 
Lognormal 
Pearson V 
Pearson VI 
Weibull 
InverseGaus 
Chisq 
Beta 
Gamma 
Rayleigh 
Triang 
ExtremeValue 
Logistic 
Pareto 
Normal 

acc (1) 
acc (2) 
acc (4) 
 
acc (3) 
acc (5) 
 
 
 
 
 
 
 

acc (3) 
acc  (2) 
 
 
acc (1) 
 
 
 
 
 
 
 
 

acc (4) 
acc (6) 
acc (2) 
acc (1) 
 
 
acc (5) 
acc (3) 
 
 
 
 
acc (7) 

acc (4) 
acc (9) 
acc (7) 
acc (6) 
acc (3) 
 
acc (8) 
acc (1) 
acc (2) 
acc (10) 
acc (5) 
 
 

acc (1) 
 
acc (2) 
 
acc (3) 
 
 
 
 
 
 
 
 

 
BestFit ranks distributions by the value of the test statistic. The ranking is 
represented by the number in parentheses. For all products lognormal has a high 
ranking. Figure 3 displays the corresponding input and fitted lognormal distributions. 
For comparison also the fitted normal distribution is added to each figure. 



 16

Endive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Concentration

D
is

tr
ib

ut
io

n

Input
Lognorm
Norm

Cabbage lettuce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Concentration

D
is

tr
ib

ut
io

n Input
Lognorm
Norm

 

Stawberry

0

0.5

1

1.5

2

2.5

Concentration

D
is

tr
ib

ut
io

n Input
Lognorm
Norm

Carrot

0

2

4

6

8

10

12

14

Concentration

D
is

tr
ib

ut
io

n Input
Lognorm
Norm

 

Currant

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Concentration

D
is

tr
ib

ut
io

n Input
Lognorm
Norm

 
Figure 3. Distribution of non-zero Iprodione concentrations for ENDIVE, 
CABBAGE LETTUCE, STRAWBERRY, CARROT and CURRANT. Input = 
empirical frequency distribution. Lognormal and Normal distributions were 
fitted to the Input data.  These graphs illustrate the results of Table 8: 
satisfactory fit of the lognormal and unsatisfactory fit of the normal 
distribution. 
 
Since residue data are positive, positively skewed and originate by mechanisms 
which generate the lognormal distribution under a variety of biological 
circumstances (Crow & Shimizu, 1988) the lognormal was chosen to proceed with. 
Ease of interpretation comprised another significant reason to choose the lognormal. 
Therefore we propose the lognormal distribution as a general model for positive 
concentrations, at least in those situations where it is not contradicted by the data. Of 
course, in future research with more data available, the choice of distributional form 
should be reinvestigated. 
 

4.2 Sparse or missing data: pooled estimates for the variance and mean 
Estimation of the sample variance and/or mean are often hampered by sparse or even 
missing data. In those cases, rearrangement of products into groups may give 
sufficient data to base estimates upon. A second related question is the reliability of 
estimates, based on a few number of degrees of freedom. The following procedure is 
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designed to cope with the above problems and is applied to the Iprodione data as an 
example: 
1. Estimate the variance and sample mean for each product, giving sigma1, mu1 

and df1, see Table 9. Notice, that in some cases the variance is missing because 
only one measurement is available (e.g. “ROODLOF”, 10801, sigma1 = *). 
Then, products are assigned to productgroups. Within each productgroup 
products are marked to indicate whether the use of residues is allowed or not. 
The homogeneity of variances in different (marked) productgroups can be 
assessed using Bartlett's test (Snedecor & Cochran, 1980). The test statistic 
determines whether variances are to be pooled automatically (p>0.05) or not 
(p 0.05). In the latter case, products are assigned to subgroups (within 
productgroups) by hand and the homogeneity of variances is tested again. For 
homogeneous groups, variances are pooled within productgroups. This process 
of assigning products to subgroups is repeated until all groups have 
homogeneous variances. After pooling the variances, an overall test for 
differences of means is performed, based on analysis of variance. Means are 
pooled automatically if the probability is > 0.05. If not, the original means are 
maintained. Table 9 shows the above procedure. The variances of productgroup 
10701* (BEAN AND “SPERZIEBOON”) are pooled automatically: sigma2 = 
1.31, df2 = 12 (= 5 + 7). The probability of the test for differences of means is p 
>0.05, so means are pooled automatically as well: mu2 = -1.66. The variances of 
productgroup 10801* (CHICORY, ENDIVE, …, LOLLO ROSSA, RADICCHIO 
ROSSO, …, LAMB’S LETTUCE) are pooled auto-matically: sigma2 = 1.48, df2 
= 439 (= 3 + 91 + … + 16), but now, means significantly differ. The variances 
for productgroup 10904* (STRAWBERRY, …, CURRANT) are heterogeneous, 
so this group is rearranged by hand into two new subgroups: 1) STRAWBERRY 
(1.14) and BLACKBERRY (1.15), and 2) RASPBERRY (1.73), BLUE BERRY 
(1.83) and CURRANT (1.87). Now, variances within subgroups are 
homogeneous and are pooled, yielding sigma2 = 1.14 for the first and 1.84 for 
the second subgroup. The means for the second group are pooled automatically: 
mu2 = -0.76, the means for STRAWBERRY and BLACKBERRY are 
maintained: mu2 = –1.57 and –0.89, respectively. Missing variances, e.g. 
“ROODLOF”, are replaced by the pooled variance of the productgroup (10801): 
sigma2 = 1.28. The missing variance of “KOUSEBAND” (10889) remains 
missing: sigma2 = *, because no (pooled) variance is available in this 
productgroup. Optional is step 4. 

2. Estimates of variances based on less than 10 df are considered not very reliable. 
Therefore, variances based on < 10 df are compared to the overall variance 
(pooled over all products except the tested product itself) and tested for equality. 
Variances are replaced by the overall variance (uncorrected) whenever the 
hypothesis of equality of variances is not rejected; if rejected, the original 
variances are maintained. If the variance is replaced for (sub)groups with two or 
more members, a test for differences of means is performed. Means are pooled 
automatically if p>0.05, if not, the original means are maintained. Table 9 shows 
how the above is implemented. E.g. BRUSSELS SPROUTS and 
OXHEART/CONICAL CABBAGE (10802) have less than 10 df with sigma2 = 
1.14. The variances are tested against the corrected overall variance, the 
probability is > 0.05, so their variances are replaced: sigma3 = 1.36 and df3 = 
882. The means, -2.70 and –2.30 are tested with p > 0.05 and are pooled 
automatically: mu3 = -2.57. Conversely, the variances of ONION (SMALL) and 
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FENNEL (10803*) are not replaced so sigma3 = 0.14. The missing variance of 
“KOUSEBAND” (10889) is replaced: sigma3 = 1.36 with df3 = 882. 

3. After carrying out the above pooling process, there still remain products with 
less than 10 df. These products are considered again. The variances are judged 
visually and assigned by hand to one or more of the products with approximately 
the same value for the (pooled) variance, After testing the variances, the 
variances are pooled again, replacing the variance based on < 10 df with the 
pooled one. Testing for differences of means is performed and for those cases 
where p>0.05, means are also pooled. E.g. PAC-CHOY (10889*) has less than 7 
df and is assigned to 10903. The pooled variance: sigma3 = 1.28 with df3 is 37 
(= 30+7), the original mean is maintained. ONION (SMALL) and VENKEL are 
not assigned to any group, so the original variance is kept: sigma3 = 0.14. 

4. Step 4 is optionally for those cases where variances are pooled, but means are 
not. Products may be rearranged into (sub)productgroups based on similarity of 
their means. Then, pooled means are calculated replacing the original ones. E.g. 
productgroup 10801* (CHICORY, ENDIVE, …, LOLLO ROSSA, RADICCHIO 
ROSSO, OAKLEAF LETTUCE, LAMB’S LETTUCE) has a pooled variance: 
sigma3 = 1.48 but the means are original. Visually, with in parentheses the 
estimate of the mean, CHICORY (-2.69), ICEBERG LETTUCE (-1.92), 
CABBAGE LETTUCE (-1.44) and CURLY LETTUCE (-2.14) are assigned to a 
subgroup, ENDIVE (-0.91), LOLLO ROSSA (-0.99), RADICCHIO ROSSO (-
0.36) and OAKLEAF LETTUCE (-0.06) to a second group while LAMB’S 
LETTUCE (0.80) forms a single group. After pooling, the new means, mu4, for 
the three subgroups are: –1.48, -0.83 and 0.80, respectively.  

Table 9. Standard deviation (sigma), mean (mu) and degrees of freedom (df) in  
different pooling steps. The asterisk indicates that the use of Iprodione on the 
product is allowed. 

Product Produc
t-group 

sigm
a1 

mu1 df1 sigma2 mu2 df2 sigma3 mu3 mu4 df3 

1  BEAN 10701* 1.60 -1.17 7 1.31 -1.66 12 1.31 -1.66 -1.66 12 

2  “SPERZIEBOON” 10701* 0.75 -2.33 5 1.31 -1.66 12 1.31 -1.66 -1.66 12 

3  CHICORY 10801* 1.38 -2.69 3 1.48 -2.69 439 1.48 -2.69 -1.48 439 

4  “ROODLOF” 10801 * -2.30 0 1.28 -0.58 16 1.28 -0.58 -0.58 16 

5  ENDIVE 10801* 1.52 -0.91 91 1.48 -0.91 439 1.48 -0.91 -0.83 439 

6  ICEBERG LETTUC 10801* 1.65 -1.92 7 1.48 -1.92 439 1.48 -1.92 -1.48 439 

7  CABBAGE LETTUCE 10801* 1.46 -1.44 285 1.48 -1.44 439 1.48 -1.44 -1.48 439 

8  CURLY LETTUCE 10801* 1.08 -2.14 3 1.48 -2.14 439 1.48 -2.14 -1.48 439 

9 LOLLO ROSSA 10801* 1.53 -0.99 21 1.48 -0.99 439 1.48 -0.99 -0.83 439 

10 LEAF  LETTUCE 10801 * -1.56 0 1.28 -0.58 16 1.28 -0.58 -0.58 16 

11 CELERY 10801 1.76 -1.27 2 1.28 -0.58 16 1.28 -0.58 -0.58 16 

12 SPINACH 10801 1.18 -0.57 9 1.28 -0.58 16 1.28 -0.58 -0.58 16 

13 CHERVIL 10801 * -1.24 0 1.28 -0.58 16 1.28 -0.58 -0.58 16 

14 PURSLANE 10801 * 0.41 0 1.28 -0.58 16 1.28 -0.58 -0.58 16 

15 RADICCHIO ROSSO 10801* * -0.36 0 1.48 -0.36 439 1.48 -0.36 -0.83 439 

16 OAKLEAF LETTUCE 10801* 1.65 -0.06 13 1.48 -0.06 439 1.48 -0.06 -0.83 439 

17 LAMB’S LETTUCE 10801* 1.25 0.80 16 1.48 0.80 439 1.48 0.80 0.80 439 

18 TURNIP TOPS/GREE 10801 1.19 1.30 2 1.28 -0.58 16 1.28 -0.58 -0.58 16 
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19 BLEACH-CELERY 10801 1.23 -0.88 3 1.28 -0.58 16 1.28 -0.58 -0.58 16 

20 CAULIFLOWER 10802* * -1.83 0 1.62 -1.83 20 1.62 -1.83 -1.83 20 

21 BRUSSELS SPROUT 10802 1.14 -2.70 1 1.14 -2.70 1 1.36 -2.57 -2.57 882 

22 CHINESE CABBAGE 10802* 1.62 -2.32 20 1.62 -2.32 20 1.62 -2.32 -2.32 20 

23 OXHEART/CONICAL 10802 * -2.30 0 1.14 -2.30 1 1.36 -2.57 -2.57 882 

24 ONION (SMALL) 10803* 0.07 -1.66 1 0.14 -1.66 3 0.14 -1.66 -2.09 3 

25 FENNEL 10803* 0.16 -2.38 2 0.14 -2.38 3 0.14 -2.38 -2.09 3 

26 POTATO 10804 0.62 0.19 1 0.59 0.19 50 0.59 0.19 0.19 50 

27 WINTER CARROT 10804 0.62 -2.55 13 0.59 -2.55 50 0.59 -2.55 -2.64 50 

28 CARROT 10804 0.54 -2.71 35 0.59 -2.71 50 0.59 -2.71 -2.64 50 

29 RADISH 10804* 1.52 -2.91 5 1.52 -2.91 5 1.36 -2.91 -2.91 882 

30 CELERIAC 10804 1.31 -2.07 1 0.59 -2.07 50 0.59 -2.07 -2.64 50 

31 CUCUMBER 10805* 0.80 -1.55 7 0.99 -2.22 26 0.99 -2.22 -2.22 26 

32 TOMATO 10805* 0.88 -2.50 13 0.99 -2.22 26 0.99 -2.22 -2.22 26 

33 SWEET PEPPER 10805* 1.33 -2.19 6 0.99 -2.22 26 0.99 -2.22 -2.22 26 

34 PUMPKIN, 10805* * -2.53 0 0.99 -2.22 26 0.99 -2.22 -2.22 26 

35 PEPPER 10805 1.23 -0.94 4 1.23 -0.94 4 1.36 -0.94 -0.94 882 

36 GHERKIN/PICKLE 10805* * -3.51 0 0.99 -2.22 26 0.99 -2.22 -2.22 26 

37 “KOUSEBAND” 10889 * -1.27 0 * -1.27 0 1.36 -1.27 -1.27 882 

38 PAC-CHOY 10889* 1.29 -0.48 7 1.29 -0.48 7 1.28 -0.48 -0.48 37 

39 MIXED VEGETABLE 10890 1.37 0.09 2 2.22 -0.45 6 1.36 -0.45 -0.45 882 

40 OTHER AGR./HORTI 10890 2.54 -0.77 4 2.22 -0.45 6 1.36 -0.45 -0.45 882 

41 KIWI FRUIT 10901 1.96 -0.96 2 1.96 -0.96 2 1.36 -0.96 -0.96 882 

42 APPLE 10902 2.02 -1.59 3 2.02 -1.59 3 1.36 -1.97 -1.97 882 

43 PEAR 10902 * -3.51 0 2.02 -3.51 3 1.36 -1.97 -1.97 882 

44 APRICOT 10903 1.55 -1.71 1 1.26 -0.83 30 1.26 -0.83 -0.83 30 

45 NECTARIN 10903 1.08 -0.97 8 1.26 -0.83 30 1.26 -0.83 -0.83 30 

46 PEACH 10903 1.18 -0.74 5 1.26 -0.83 30 1.26 -0.83 -0.83 30 

47 PLUM, INCLUDING  10903 1.34 -0.69 16 1.26 -0.83 30 1.26 -0.83 -0.83 30 

48 SWEET CHERRY 10903* 0.89 -0.69 11 0.89 -0.69 11 0.89 -0.69 -0.69 11 

49 GRAPE 10904 1.14 -1.06 24 1.14 -1.06 24 1.14 -1.06 -1.06 24 

50 STRAWBERRY 10904* 1.14 -1.57 168 1.14 -1.57 184 1.14 -1.57 -1.51 184 

51 RASPBERRY 10904* 1.73 -1.04 8 1.84 -0.76 39 1.84 -0.76 -0.76 39 

52 BLACKBERRY 10904* 1.15 -0.89 16 1.14 -0.89 184 1.14 -0.89 -1.51 184 

53 BLUE BERRY 10904* 1.83 -1.24 2 1.84 -0.76 39 1.84 -0.76 -0.76 39 

54 CURRANT 10904* 1.87 -0.62 29 1.84 -0.76 39 1.84 -0.76 -0.76 39 

55 OTHER FRUIT, NUT 10990 * -1.51 0 * -1.51 0 1.36 -1.51 -1.51 882 
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4.3 Results of parametric approach 
The simulations were performed using Genstat. Table 10 summarizes the results of 
the Monte Carlo study using parametric distributions. The number of iterations was 
50,000 and a simulation run took approximately 13 minutes. The estimates are based 
on the parameter estimates of Table 9, which is produced applying step 1, 2 and 3 
and the optional step 4. 
 

Table 10. Estimates of percentiles of exposure to Iprodione using parametric 
and non-parametric approach. Simulations with Genstat (50000 iterations).  

Iprodione 
 

Percentile 
 

95 
% 

98 
% 

99 
% 

99.5 
% 

99.9 
% 

99.99 
% 

Parametric Genstat 0.68 
0.71 
0.71 

2.4 
2.3 
2.1 

4.6 
4.6 
4.1 

7.7 
7.7 
7.1 

23 
20 
20 

66 
55 
58 

Nonparametric 
(results copied 
from Table 5) 

Genstat 0.66 
0.62 
0.64 

2.1 
2.2 
2.0 

4.3 
4.5 
4.0 

7.0 
8.4 
6.6 

18 
22 
16 

64 
74 
44 

 
 
 
For comparison the results of the nonparametric approach have also been included in 
Table 10. It can be seen that the percentiles yield estimates of risk exposure that are 
in the same range, although, vaguely  the parametric equivalent seems to give 
slightly less variable results, and provide somewhat higher estimates of the 95th 
percentile. However, such differences should be investigated more fully in future 
research. 
The interpretation of the 99.99 % percentile is that only 5 intakes out of 50000 are 
expected to be higher than about 60 μg/kg/day. Table 11 shows which products are 
responsible for the 10 highest simulated intakes in one of the parametric simulations. 
Just as in the non-parametric approach, ENDIVE turns out to be the main source of  
very high intakes. 
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Figure 4. Upper tail of the parametric frequency distribution for Iprodione 
exposure. The first three bars (cut off at 250) represent zero exposures (25659 
values) and positive values ≤ 2 μg/kg/day (23285 values) and values >2 and ≤ 4 . 
μg/kg/day (540 values). 
 

Table 11. Parametric approach. Top 10 (0.02 %) of 50000 simulated total 
Iprodione intakes (μg/kg/day), traced to responsible products (excluding 
contributions < 0.5 μg/kg/day). 
Total intake 280 110 88 78 60 56 54 54 52 52 
“SPERZIEBOON”        56         
ENDIVE 280 110    78      54  52  
SPINACH            54      
LAMB’S 
LETTUCE 

         52 

POTATO     4      
STRAWBERRY      2     
BLUE BERRY   88        
APPLE      54     



 22

 

5 Discussion 
How many data are required for a sensible calculation of upper-tail percentiles in the 
exposure distribution? This report has described a non-parametric probabilistic 
approach which needs sufficient representative measurements of the residue under 
consideration for each food commodity which might contribute to residue intake in 
substantial amounts. In the absence of a parametric model the rule of thumb can be 
used that the chosen percentile should be contained directly in the data. For example, 
at least 20 measurements are needed to estimate the 95th percentile (each 
measurement represents 5 % of the distribution), and at least 100 measurements to 
estimate the 99th percentile (each measurement represents 1 %). More generally, the 
number of measurements per food commodity (n) should at least equal 1/(1-p%/100) 
to allow a rough empirical estimate of the pth percentile of the residue concentration 
distribution to be made. Of course, the risk assessment is only coarse with this 
minimum amount of data, and larger sample sizes per food commodity are certainly 
worthwhile.  
A cautionary note is that enlarging the number of simulated intakes (from 50,000 to 
500,000 say) may stabilize the results obtained from the data set, but does never 
compensate for incidental extreme values or lack of detects due to small size of the 
data. Said otherwise: random errors in the data (likely in small data sets) behave as 
systematic effects in repeated analyses of the same data set, and thus may give a 
false impression of reliability. In future research the variability of the risk percentile 
estimates as a function of both sample size and simulation size should be 
investigated more fully, e.g. using bootstrap methodology.    
In the practical examples of this study there were generally enough observations per 
product to allow a non-parametric approach for the 95th percentile. Only for some 
less consumed products (APRICOT, GHERKIN/PICKLE, BLUE BERRY, 
CANTHARELLE, CHERVIL, “KOUSEBAND”/BLACK-EYED PEA, CURLY 
LETTUCE, OTHER FRUIT & NUTS, PASSION FRUIT, LEAF LETTUCE, 
“RADICCHIO ROSSO”, “ROODLOF”, BEAN, BROAD BEAN) the number of 
measurements was below 20. Assuming that no important food components are 
missing from Table 1 and that in the table missing values for important food 
products represent at least 20 non-detect measurements, the data seem suitable for 
the risk analysis.  
In situations where the number of measurements becomes a problem, an appropriate 
risk analysis should be based on further modelling (essentially the lack of data is 
compensated by a priori assumptions). Two options can be chosen, or combined: 
1. Parametric modelling: assuming a simple distributional form for the residue data 

the number of measurements can be smaller in principle (at least 10, say). 
However, non-detect measurements provide no information about variability, 
and therefore we should now count the number of measurements > 0. Figure 5 
shows which approach could be best used depending on the total number of 
measurements and the number of positive measurements. In principle, such a 
choice could be made separately for each food commodity.  

2. Grouping of products:  this enlarges the number of measurements per group. We 
must assume now that the residue distributions are the same for the grouped 
products. In the case of parametric modelling the assumptions of equality can be 
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restricted to a subset of the parameters (in the chosen binomial-lognormal model: 
detect probability, lognormal mean, lognormal standard deviation). 

In this study only one simple parametric approach has been implemented, using a 
binomial-lognormal model for all products, and pooling the lognormal parameters 
where possible. Further studies are needed to investigate a flexible procedure for 
dietary risk analysis which would adapt to the varying practical database conditions 
 
 
 
 

 

Figure 5. Use of non-parametric or parametric modelling for estimating 99 % 
exposure percentile in relation to sample size and number of positive 
measurements. 
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6 Conclusions 
 
The results of the project described in this report are: 
• A Genstat program and an Excel worksheet (to be used with @Risk) both 

implementing the nonparametric method of dietary acute risk assessment. The 
Genstat implementation allows for a selection on age of individuals in the 
database. With the @Risk implementation Latin hypercube sampling can be used 
instead of random sampling. See Chapter 3. 

• A Genstat program implementing a parametric method of dietary acute risk 
assessment. The parametric method employs a binomial/lognormal model for the 
residue concentrations. There are possibilities for automatic or user-defined 
pooling of parameters over products. See Chapter 4. 

• A comparison of distributions to be used in the parametric approach using the 
program Bestfit. See section 4.1. 

• Application of the nonparametric method to datasets of five example residues 
(chlorotalonil, Iprodione, Parathion, Pirimicarb and Tolclofos-methyl) and 
application of the parametric method to the data of one residue (Iprodione). In all 
cases upper-tail percentiles were calculated, and for Iprodione details were given 
on the contributions  of specific products to the upper tail. See sections 3.3 and 
4.3. 

• A discussion of the potentials of both the parametric and nonparametric approach 
for use in situations where data are not abundant. See Chapter 5. 
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Appendix 
 
Programs: 
RISKNPAR.GEN and RISKNPAR.XLS implement the nonparametric approach of 
Chapter 3 in Genstat and @Risk, respectively. 
RISKPAR.GEN implements the parametric method of Chapter 4 in Genstat. 
 
Data files: 
personen.lis: respondents (personal number, age, weight)  
####_sto.lis: residue-labels (compound residuecode, label) 
####_geh.lis: positive residue concentrations (productcode, concentration) 
####_nge.lis: total number of detects and non-detects (x, productcode, n) 
####_con.lis: consumption data (personal number, x, x, compound productcode, x) 
####_prd.lis: product-labels (x, productcode, label) 
####_pro.lis; same as prd file, but with an additional column indicating whether the 
pesticide is allowed (1) or not (0) for each product (this file is used in 
RISKPAR.GEN)  
Replace ‘####’ by code for residue (CHLR = Chlorothalonil, IPRO = Iprodione, 
PARA =  Parathion, PIRI = Pirimicarb, TOLC  = Tolclofos-methyl) 
 
####_prd.lis 
Each product is characterized by a product code built hierarchically from 5 numbers:  
1 - productfile number 
2 - productgroup number 
3 - productsubgroup number 
4 - productnumber 
5 - productquality number 
 
example: 
productfile 

1 food commodity 

 

productgroup 

1 7 pulse, seed, pits and nuts 

2 8 vegetables, potatoes, beet and turnip 

3 9 fruit 

 

productsubgroup 

1 7 1 pulse 

1 8 1 leaf, stem and stalk vegetables 

1 8 2 cabbages species 
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1 8 4 potatoes, carrots, turnip 

1 9 2 apple species 

1 9 4 berries 

 

product (incl. productquality) 

1 7 1 10 1 bean (scarlet runner, green bean, string bean) 

1 8 1 2 1 endive 

1 8 1 5 1 cabbage lettuce, bindsla 

1 8 1 15 2 spinach 

1 8 2 2 1 cauliflower 

1 8 4 1 1 potato 

1 8 4 3 1 beet 

1 9 2 1 1 apple 

1 9 4 3 1 strawberry 

 
####_sto.lis 
Each residue is characterized by a code built hierarchically from 3 numbers 
1 – residue group number 
2 – residue subgroup number 
3 - residue number 
 
example 
residue group 
11 bactericides and fungicides 
21 elements and organometals 
 
residue subgroup 
11 5 dicarboximides 
21 3 other anorganic compounds 
 
residues 
11 5 1 Iprodione (=glycofeen) 
21 3 5 nitrate 
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